Публичное акционерное общество «Научно-производственное объединение «Алмаз» имени академика А.А. Расплетина»

ПРИНЯТО

УТВЕРЖДАЮ

НТС ПАО «НПО «Алмаз» Протокол № 4 от 26 августа 2020 г.

Программа вступительных испытаний подготовки научно-педагогических кадров в аспирантуре «РАДИОЛОКАЦИЯ И РАДИОНАВИГАЦИЯ»

Введение

Цель вступительного экзамена по специальности 05.12.14 Радиолокация и радионавигация – подтвердить необходимый для обучения в аспирантуре и успешного написания диссертации начальный уровень знаний по указанной специальности. Программа охватывает не только непосредственно области радиолокации и радионавигации, но и те разделы радиотехники, без знания которых успешное освоение программы обучения в аспирантуре невозможно.

При сдаче экзамена каждому экзаменующемуся предлагается билет, содержащий два вопроса по данной программе. В заключительной части экзамена проводится собеседование по теме его реферата. Экзаменующийся должен продемонстрировать:

- знание материала, предусмотренного данной программой;
- умение кратко изложить содержание своего реферата или имеющихся у него опубликованных работ;
- владение всем кругом вопросов, связанных с узкой областью, к которой относится реферат.

При разработке программы были использованы: Государственный стандарт подготовки специалистов по направлению 11.05.01 Радиоэлектронные системы и комплексы и Государственный стандарт подготовки магистров техники и технологии по направлению 11.04.01 Радиотехника, а также действующие программы вступительных экзаменов в аспирантуру по специальности 05.12.14:

- Московского авиационного института (национального исследовательского университета);
 - Национального исследовательского университета «МЭИ»;
 - Московского технологического университета (МИРЭА).

Программа вступительного экзамена

Детерминированные сигналы. Периодические сигналы. Представление периодических сигналов рядом Фурье. Спектры сигналов. Радиосигналы, виды модуляции. Непериодические сигналы. Преобразование Фурье. Сигналы с ограниченным спектром. Теорема Котельникова. Узкополосные сигналы. Аналитический сигнал. Комплексная огибающая.

Случайные сигналы. Закон распределения случайной функции. Стационарный случайный процесс. Эргодический процесс. Нормальный случайный процесс. Корреляционная функция и энергетический спектр случайного процесса. Формулы Винера-Хинчина.

Дискретные сигналы. Дискретизация и восстановление сигналов. Дискретное преобразование Фурье, Z-преобразование. Цифровая фильтрация.

Назначение и классификация радиолокационных систем. Основные задачи, решаемые радиолокационными системами (РЛС). Основные тактико-технические характеристики РЛС. Физические основы активного и пассивного обнаружения радиолокационных целей. Однопозиционные, бистатические (разнесенные) и многопозиционные РЛС. Физические основы определения координат и параметров движения целей. Диапазоны радиоволн, используемые в радиолокации. Классификация сигналов и помех в РЛС. Применение детерминированных, квазидетерминированных и случайных функций для построения моделей сигналов и помех. Простые, сложные, узкополосные, широкополосные и сверхширокополосные радиолокационные сигналы.

Виды вторичного излучения электромагнитных волн. Эффективная площадь рассеяния объектов (ЭПР). Поляризационная матрица рассеяния и матрица ЭПР. Классификация радиолокационных объектов. ЭПР элементарных объектов. ЭПР сложных объектов. ЭПР поверхностно-распределенных объектов. ЭПР объемно-распределенных объектов. Экспериментальное определение ЭПР. Способы изменения радиолокационной заметности объектов. Малозаметные радиолокационные цели.

Дальность действия радиолокационной системы. Дальность действия в свободном пространстве; дальность действия радиолинии, пассивной системы, активной системы, бистатической системы, активной системы с активным ответом. Влияние атмосферы и земной поверхности на дальность действия. Дальность прямой видимости.

Статистическое описание сигналов и помех в радиотехнических системах. Обнаружение сигналов как двухальтернативная проверка гипотез. Решающие правила оптимального обнаружения; критерий Байеса, критерий Неймана-Пирсона. Последовательное

обнаружение, критерий Вальда. Показатели качества обнаружения. Обнаружение детерминированных и квазидетерминированных сигналов на фоне белого шума. Корреляционная, фильтровая и корреляционно-фильтровая обработка сигналов. Обнаружение радиосигналов со случайной начальной фазой и амплитудой. Обнаружение пачки когерентных радиоимпульсов на фоне белого шума. Обнаружение нефлуктуирующих и флуктуирующих пачек некогерентных радиоимпульсов на фоне белого шума. Методика расчета пороговой мощности сигналов.

Задача оценки параметров в радиолокации. Фильтрация, интерполяция, экстраполяция в радиолокации. Информативные и неинформативные параметры сигналов. Байесовские оценки и их свойства. Небайесовские оценки. Оценка максимального правдоподобия параметра сигнала и ее свойства. Неравенство Крамера-Рао. Потенциальная точность измерения параметра сигнала. Многоканальные и следящие измерители.

Общие сведения о разрешении, различении и распознавании объектов и сигналов. Признаки объектов и сигналов, используемые при радиолокационном распознавании. Взаимосвязь задач разрешения и распознавания. Статистическая оптимизация разрешения, различения и распознавания сигналов; решающие правила и показатели качества. Алгоритмы разрешения, различения и распознавания детерминированных и квазидетерминированных сигналов на фоне белого шума.

Обнаружение радиолокационных целей на фоне пассивных помех, селекция движущихся целей (СДЦ). Особенности борьбы с пассивными помехами в РЛС. Фильтры череспериодной компенсации (ЧПК). ЧПК-1, ЧПК-2. Фильтровая СДЦ. Слепые скорости. Слепые дальности. Методы борьбы со слепыми скоростями и слепыми дальностями.

Обзор пространства и поиск радиолокационных целей. Методы определения координат объектов. Методы измерения дальности до цели; импульсный, фазовый и частотный методы. Основные погрешности радиодальнометрии. Импульсный радиодальномер. Следящие импульсные радиодальномеры; режимы поиска и слежения. Фазовый радиодальномер; точность и однозначность измерения. Частотный радиодальномер; точность и разрешающая способность. Измерение радиальной скорости движения объекта.

Методы измерения угловых координат (радиопеленгации); пеленгационная характеристика. Амплитудные и фазовые методы измерения угловых координат. Следящие измерители угловых координат. Моноимпульсные измерители угловых координат.

Рекомендуемая литература

- 1. Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 2005.
- 2. Стеценко О.А. Радиотехнические цепи и сигналы. М.: Высшая школа, 2007.
- 3. Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем. М.: Радио и связь, 1991.
- 4. Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации. М.: Радио и связь, 1992.
- 5. Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. М.: Радио и связь, 1981.
- 6. Бакулев П.А. Радиолокационные системы. М.: Радиотехника, 2007.
- 7. Перов А.И. Статистическая теория радиотехнических систем. М.: Радиотехника, 2003.
- 8. Казаринов Ю.М., Коломенский Ю.А., Кутузов В.М. и др. Радиотехнические системы / Под ред. Ю.М. Казаринова. М.: Изд. центр «Академия», 2008.
- 9. Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем. М.: Радио и связь, 1991.
- 10. Информационные технологии в радиотехнических системах / Под ред. И.Б.Федорова.-М.: Изд. МГТУ им. Н.Э.Баумана, 2004.
- 11. Горбунов Ю.Н., Лобанов Б.С., Куликов Г.В. Введение в стохастическую радиолокацию. Учебное пособие для вузов. – М.: Горячая линия - Телеком, 2015.
- 12. Теоретические основы радиолокации. Под ред.В.Е. Дулевича. Учебное пособие для вузов. М.: Сов. радио, 1978.
- 13. Бакулев П.А., Сосновский А.А. Радионавигационные системы. М.: Радиотехника, 2005.